
PAGE 36 J U L Y / A U G U S T 2 0 0 4

Many J2EE applications include the require-

ment to display lists of database records as a

result of the user search. S uch search operations

can involve processing large data sets on the

server side. F or example, think of the typical

search in an online product catalog containing

several thousand products.

Applications processing large result sets can

face scalability and performance issues when the

number of concurrent clients increases. W hen a

query is executed according to user-supplied

search criteria there may be no way to anticipate

how much data will be returned. The result set

might include a huge amount of data, so you can-

not blindly send the query result back to the client

without causing undue performance problems.

F or managing large database result sets the

design pattern V alue List H andler is frequently used.

The J2EE B lueprint recommends using this pattern

to control the search, cache the results, and provide

the results to the client. In this solution, when the

client wants to search data the V alueListH andler is

called which intercepts the client search request

and returns data iteratively in chunks of pages.

The V alueListH andler provides query execu-

tion functionality and results caching. I t imple-

ments an I terator interface (see F igure 1).

The V alueList is a collection class that holds a

set of Transfer Objects representing database

records. In this design pattern the handler does

not return the entire result list but only a subset

of data. In a production application the

V alueListH andler is usually hidden behind a

façade according to the B usiness S ervice F açade

pattern.

The J2EE B lueprint describes some general

implementation strategies for the V alue List

H andler pattern. F or example, it recommends

using a Data Access Object (DAO) instead of enti-

ty beans if performance is an issue. H owever,

when implementing a particular application a

developer needs to consider further design trade-

offs in order to meet specific functional and per-

formance requirements.

In this article we present an implementation

of the V alue List H andler pattern proven in a

large-scale W ebLogic project. Y ou can apply this

approach when you develop an application that:

• I s to be used by several thousand concurrent

users

• H as to display some part of the user search

results in chunks of pages

• Assumes that the paging is consistent across

requests, i.e. the underlying data is not expect-

ed to change when scrolling the result set

A Case Study
A travel retailer decided to develop a W eb-

based system offering travel agents direct access

to information and reservation systems of a wide

range of travel providers. The system was to be

used by thousands of travel agents worldwide.

Agents could select from over 100 million pack-

age holidays and over 5 million last-minute travel

DESIGN PATTERNS

AUTHOR BIO

Thomas Kruse has been working in

the IT ind ustry for 1 3 y ears. H e has

ex p erienc e with J 2 E E tec hnology

and has c omp leted two-large sc ale

J 2 E E ap p lic ations d uring this time.

H is p rofessional bac kground ranges

from d ev elop er to sy stem d esigner

to sy stem arc hitec t.

A lois L ec hic ki is a p rinc ip al c onsult-

ant at S oftlab, M unic h. H e works

with c ustomers to help d esign and

imp lement J 2 E E arc hitec tures. A lois

has more than 1 5 y ears of ex p eri-

enc e in software engineering.

CONTACT...

thomas.kruse@kruse-it.de

alois.lechicki@softlab.de

T
he V alue List Handler is a well-

known design pattern for dealing

with large database results. There

are, however, many trade-offs to consider when

implementing this pattern. Here are some practical

tips to make the pattern work, especially in large-

scale J2EE applications.

H a n d lin g L a rg e Da ta b a s e

Result Sets
THE ONE-WRITE APPROACH IN

LARGE-SCALE APPLICATIONS

BY THOMAS KRUSE

& ALOIS LECHICKI

PAGE 37J U L Y / A U G U S T 2 0 0 4

bargains, updated daily. The system enabled users to search for a

desired holiday package, check room and flight availability, then

book and track customer reservations.

The site had to support the following use cases:

• A travel agent enters a customer’s requirements, such as holiday

destination, hotel facilities, room furnishings, and flight time.

• The site generates travel options based on requirements provid-

ed by the agent.

• The customer selects a travel option and the agent makes reser-

vations.

• The agent completes the transaction by supplying a credit card

number.

The second use case required running complex queries in the

database containing package holidays. Searching in this database

could produce result sets of extremely different lengths. Depending

on the holiday destination, hotel category, room furnishings, and

flight time, one could find a small or a huge number of options.

However, the travel agent was not expected to browse through long

result lists. She or he was rather expected to repeat the search oper-

ation after narrowing the search criteria.

C onsequently, one requirement was to sort the result list

according to a customer’s preferences and then to cut it at a given

position. The retailer estimated that it was enough to show only the

first few hundred holiday packages.

Another requirement was to avoid a heavy load on online reser-

vation systems when checking for availability. Thus the result list

should not be checked at once but rather in chunks of, say, 20 maxi-

mum package holidays. C onsequently, one design choice was to

implement a page-by-page iterator based on the Value List Handler

pattern. In this case, we could assume that the paging was consistent

across requests. In other words, the underlying data in the database

was not expected to change when scrolling the returned result set.

Since the application was required to have a sophisticated GUI

with a complex workflow, another design choice was to develop a

rich client using the applet technology. As a result, the client-side

approach was used to manage session information (a session iden-

tifier) across multiple requests.

The server-side application design followed the principle of a

service-oriented architecture (SOA). Groups of methods are clus-

tered together in the services layer and exposed to the client via a

service object – an EJB session bean. For example, the session bean

HolidayPackageServices provides methods for searching and book-

ing holiday packages.

For transferring data between components the design pattern

Data Transfer Object (DTO) was applied. However, in order to min-

imiz e the impact of frequent changes in the domain layer, we

decided to use dynamic data transfer objects (DDTO; see sidebar).

The system was implemented using BEA WebLogic Server 8.1

SP1 and an Oracle database for storing data related to package hol-

idays. The application accessed online reservation systems of tour

operators via SOAP over HTTP(S). The client (applet) accessed the

server-side services via the Web services infrastructure provided by

WebLogic Server. This was easy to develop using sever tools that

generate Web services interfaces and require little or no coding.

Figure 2 shows an overview of the application architecture.

Problems

Since the application had to manage several thousand concur-

rent clients, we decided to use the stateless approach. However,

search operations in the database turned out to be too resource

intensive to be repeated for each paging request. Thus one design

decision was to store search results in the database whenever a

query result was too large to be returned to the client in one chunk.

A holiday package was represented by a graph of objects, called

package items. In the first implementation packages were stored in

the database as full-blown object graphs using an object-to-rela-

tional mapping (O/R -mapping). Unfortunately, load and perform-

ance tests soon revealed a poor response time primarily due to

extensive interactions between the application server and the data-

base server. Each “ store query result” request led to several hun-

dred “ writes” of the package item records.

Improved Solution

Due to the performance issues described above, the original

implementation of the Value List Handler pattern had to be

changed. The key idea was to minimiz e the number of “ write”

operations. We started by storing all items of a holiday package in

one Oracle BLOB field. The next improvement was to write the

result set in chunks of pages, each chunk as one BLOB. Finally we

decided to store the entire result set (i.e., the actually fetched part

FIGURE 2

Application architecture overview

FIGURE 1

Class diagram for the V alue List Handler pattern

DESIGN PATTERNS

PAGE 38 J U L Y / A U G U S T 2 0 0 4

DESIGN PATTERNS

of it) in a BLOB field in a single “write” operation.

After executing a query according to user-supplied search crite-

ria, the first N records were fetched (if available) and stored in a list

of dynamic data transfer objects (DDTOList). The number N was

configurable and could be changed at run time. When the actual

number of returned records was greater than the page size, the

DDTOList was serialized and stored as a single record in the HOLI-

DAY-_PACKAGE_BAG table (see Table 1). Of course, a clean-up

mechanism was implemented as well.

In this solution, the record containing the result set was read

each time the client required the next page. It means that more

data was actually read than needed. However, we found that in this

trade-off “read” operations were less expensive than “write” opera-

tions.

Finally, further load and performance tests confirmed that the

“one-write” solution improved the performance of the system by

an order of magnitude compared to the initial implementation.

Under the Hood
Let's look a little more closely at the implementation – and con-

sider a typical use case.

When selling holidays the travel agent asks the customer about

his wishes for a vacation destination, hotel facilities, required room

furnishings, and so on. After supplying all mandatory information

the travel agent sends a request to the system and waits for the first

page of holiday packages. He then presents the result list to the

customer, asking him to make a choice. However, it may happen

that none of the offers on the list appeals to the customer. In this

case the travel agent either asks the system for the next page or he

changes the search criteria and repeats the search request.

From a technical viewpoint, this use case can be split into two

sequence diagrams, which are discussed in the next sections.

Scenario 1: Get First Block of Holiday Packages

This scenario (see Figure 3) shows the flow of control when the

customer's request is defined and the search operation is started.

• Message (1): At first, all information required for the

getHolidayPackages request is collected by the applet. The

client-side workflow supports the user in entering only a valid

set of search criteria. This data is stored in a dynamic data trans-

fer object (DDTO).

• Message (2): After filling the DDTO, the applet calls the Web

services method getHoliday-Packages using a local stub object.

The stub serializes the DDTO to a SOAP message and sends it

via HTTPS to the server.

• Message (3): When the server receives the SOAP message it

deserializes its payload and puts the data into a DDTO. Then it

calls the method getHolidayPackages of the stateless session

bean HolidayPackageServicesBean (for better readability we

have skipped aspects of session tracking and security and

authorization issues).

• Message (4): Now a DAO object builds a select statement using

the search criteria contained in the DDTO and executes the

query. In this process, the result set is sorted according to user

preferences and business rules.

• Message (5): The DAO object gets the first N records from the

database (the number N is configurable), if available, and stores

them in a DDTOList object. When the DAO completes reading

records, it closes the database connection.

• Message (6): A unique holidayPackageBagId is created and stored

in the DDTOList object. This id has to be supplied by the client

among other items in subsequent requests to identify the result set.

• Messages (7) – (9): These messages are sent only if the actual

number of retrieved records exceeds the (configurable) page

size. The DDTOList is serialized using the standard Java mecha-

nism and stored as one record (as BLOB) in the

HOLIDAY_PACKAGE_BAG table. The holidayPackageBagId is

FIGURE 3

Sequence diagram: get the first chunk of holiday packages

TABLE 1

Database table for storing result sets

FIGURE 4

Sequence diagram: get next block of holiday packages

COLUMN NAME DATA TYPE REMARK

ID NUMBER(16) Primary key

RESULT_SET BLOB Serialized DDTOList object

containing query result

CREATION_TIMESTAMP DATE Timestamp of record creation

PAGE 39J U L Y / A U G U S T 2 0 0 4

used here as key. After that, the DDTOList is so truncated that it

contains only the first chunk of the result list and the length of

the original list.

• Message (10): The position of the next page nextOffset is added

to the DDTOList and the list is sent back to the client using the

WLS WebServices infrastructure.

• Message (11): The client receives the response and displays the

first page of the result list. The total number of records available

on the server is displayed as well.

Scenario 2: Get the Next Block of Holiday Packages

The second scenario (see Figure 4) shows the flow of control

when the client asks for the next chunk of the result list. It means

that the initial search operation returned a record set having more

records than one page could contain.

• Message (1): The applet creates a dynamic data transfer object

(DDTO) and puts both holidayPackageBagId and nextOffset

into it. Note that it is up to the client to manage session infor-

mation.

• Message (2): The applet calls the Web services method

getNextHolidayPackages using a local stub object. The stub seri-

alizes the DDTO to a SOAP message and sends it via HTTPS to

the server.

• Message (3): The server deserializes the message payload and

puts the data into a DDTO. It then calls the method

getNextHolidayPackages of the stateless session bean

HolidayPackageServicesBean.

• Message (4): A DAO object is used to retrieve the record corre-

sponding to holidayPackageBagId from the table

HOLIDAY_PACKAGE_BAG.

• Messages (5)–(7): The BLOB field RESULT_SET is deserialized

into a DDTOList object using the standard Java mechanism. Let

us recall (see Scenario 1) that the DDTOList contains all holiday

packages retrieved in the initial search operation. Now using

the parameter nextOffset the next chunk of the result list is cre-

ated and sent as DDTOList back to the client. Before that, the

value of nextOffset is updated so that it points at the subse-

quent page.

• Message (8): The client receives the response and displays the

next page of the result list.

Back to the Pattern
In the solution presented above the HolidayPackageServices

Bean implemented only a part of the interface ValueListIterator.

For example, the method getPreviousElement was not needed

because the client (applet) cached read records. From the client

point of view it was enough to provide only two methods of the

ValueListIterator: getHolidayPackages and getNextHoliday

Packages. Figure 5 shows the Value List Handler pattern as imple-

mented in the case study in relation to Sun’s archetype.

Conclusion
In the case study presented here we used the Value List Handler

pattern to provide a Web service for searching holiday packages. In

this pattern long result sets are sent to the client iteratively in

chunks of pages.

While this approach reduces network overhead, caching of

result sets can still be an issue. Stateful session beans are not

always an option if you have several thousand concurrent users

and the ValueList object has to hold long result lists.

The key design decision in the case study was to use stateless ses-

sion beans and to store result sets, longer than one page, in the data-

base. The chosen implementation improved the performance of

database operations by reducing the number of write operations.

This was done by storing result sets in a compact form as Oracle

BLOBs.

An additional advantage of this approach was easy deployment

of the load balancing mechanism.

References
• Sun M icrosystems: http://java.sun.com/blueprints/corej2eepat-

terns/Patterns/ValueListHandler.html

• SO A : webservices.xml.com/pub/a/ws/2003/09/30/soa.html

• Marinescu, Floyd. (2002) EJB D esig n P atterns: A dv anced

P atterns, P rocesses, and I dioms. Wiley Computer Publishing.

FIGURE 5

Class diagram: the implemented Value List Handler pattern

DYNAMIC DATA TRANSFER OBJECTS (DDTO)

The concept of dynamic data transfer object (DDTO) is based

on the Generic Attribute Access pattern. This approach is used to

minimize the impact of frequent changes in the domain layer on

the rest of the system. A DDTO is a generic data container that

can hold an arbitrary set of data. It provides a generic attribute

access interface using HashMaps and key-value notation.

DDTOs implemented in the case study could contain both

simple data types (String, Integer, etc.) and complex ones (struc-

tures). Moreover, nested DDTOs and lists of DDTOs (DDTOList)

were supported as well.

The implemented framework provided a type-safe access to

the content of a DDTO. It also contained superclasses for DAOs

and entity beans implementing completely generic interface

methods. Thus DAOs and entity beans could expose a unified

interface to their attributes, with almost no extra coding

required.

DESIGN PATTERNS

